The human formylpeptide receptor (FPR) is a seven-transmembranous G-protein-coupled receptor (7TM-GPCR) for chemotactic peptides of bacterial origins, possibly involved in the recruitment and activation of neutrophils in various inflammatory diseases of mucosal epithelia. Mutational analyses suggest that interactions of formylated peptides with FPR occur on the outer exoplasmic leaflet/domains of the plasma membrane. The immunosuppressive and antifungal antibiotic cyclic undecapeptide cyclosporin A (CsA; cyclo-[MeBmt(1)-Abu(2)-MeGly(3)-MeLeu(4)-Val(5)-MeLeu(6)-Ala(7)-D-Ala(8)-MeLeu(9)-MeLeu(10)-MeVal(11)]) and some tested analogues such as [Ala(2)]-CsA, [Thr(2)]-CsA, [Val(2)]-CsA, and [Nva(2)]-CsA were able of inhibiting the binding of formylpeptides to the FPR, with [D-MeVal(11)]-CsA (CsH) being much more active than the other analogues.
View Article and Find Full Text PDFCyclic undecapeptide cyclo-[MeBmt(1)-Abu(2)-MeGly(3)-MeLeu(4)-Val(5)-MeLeu(6)-Ala(7)-D-Ala(8)-MeLeu(9)-MeLeu(10)-MeVal(11)], the immunosuppressive and antifungal antibiotic cyclosporin A (CsA), was reported to interfere with the MDR1 P-glycoprotein (Pgp), a transmembranous adenosine 5'-triphosphate binding cassette (ABC) transporter with phospholipid flippase or "hydrophobic vacuum cleaner" properties that mediate multidrug resistance (MDR) of cancer cells. By use of photoaffinity-labeled cyclosporins and membranes from Pgp-expressing cells, it was recently shown that in vitro, Pgp molecules could bind a large cyclosporin domain involving residues 4-9 as well as the side chain of residue 1. Tumor cell MDR can also be reversed by a product more distantly related to cyclosporin with the structure [Thr(2), Leu(5), D-Hiv(8), Leu(10)]-CsA (SDZ 214-103).
View Article and Find Full Text PDFBy sequestering cytosolic calcineurin into a molecular complex with cyclophilin and its consequent T-cell dysfunction, some cyclosporins, such as CsA and FR901459 ([Thr2-Leu5-Leu10]-CsA), display potent immunosuppressive activity. Independently on this property, cyclosporins may display one or more other biological activities mediated by interaction with cell surface glycoproteins. Several cyclosporins inhibit the function of human MDRI-encoded P-glycoprotein (Pgp), a flippase known to cause cancer multidrug resistance, but also expressed by some normal immunocompetent cells and by normal epithelial cells which control drug bioavailability in vivo.
View Article and Find Full Text PDFCyclic depsipeptide cyclo-[D-Hmp(1)-L-MeVal(2)-L-Phe(3)-L-MePhe(4)-L-Pro(5)-L-aIle+ ++(6)-L-MeVal(7)-L-Leu(8)-L-betaHOMeVal(9)], the antifungal antibiotic aureobasidin A (AbA), was reported to interfere with ATP-binding cassette (ABC) transporters in yeast and mammalian cells, particularly the MDR1 P-glycoprotein (Pgp), a transmembrane phospholipid flippase or "hydrophobic vacuum cleaner" that mediates multidrug resistance (MDR) of cancer cells. In a standardized assay that measures Pgp function by the Pgp-mediated efflux of the calcein-AM Pgp substrate and uses human lymphoblastoid MDR-CEM (VBL(100)) cells as highly resistant Pgp-expressing cells and the cyclic undecapeptide cyclosporin A (CsA) as a reference MDR-reversing agent (IC(50) of 3.4 microM), AbA was found to be a more active Pgp inhibitor (IC(50) of 2.
View Article and Find Full Text PDF