Publications by authors named "T Warbrick"

Article Synopsis
  • Combining MRI and EEG offers a comprehensive way to study brain function, but existing EEG nets limit the quality of simultaneous imaging due to radiofrequency interference.
  • The study tested the Inknet2, a new high-resistance EEG net using conductive ink, which showed potential to minimize artifacts and maintain image quality across various MRI sequences.
  • Results indicated that Inknet2 produced fewer artifacts than traditional nets and achieved comparable image quality to scans without any net, making it a promising tool for high-quality brain imaging.
View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) and continuous electroencephalogram (EEG) monitoring are essential in the clinical management of neonatal seizures. EEG electrodes, however, can significantly degrade the image quality of both MRI and CT due to substantial metallic artifacts and distortions. Thus, we developed a novel thin film trace EEG net ("NeoNet") for improved MRI and CT image quality without compromising the EEG signal quality.

View Article and Find Full Text PDF

Simultaneous EEG-fMRI has developed into a mature measurement technique in the past 25 years. During this time considerable technical and analytical advances have been made, enabling valuable scientific contributions to a range of research fields. This review will begin with an introduction to the measurement principles involved in EEG and fMRI and the advantages of combining these methods.

View Article and Find Full Text PDF

Despite the relationship between brain structure and function being of fundamental interest in cognitive neuroscience, the relationship between the brain's white matter, measured using fractional anisotropy (FA), and the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) response is poorly understood. A systematic review of literature investigating the association between FA and fMRI BOLD response was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed and Web of Knowledge databases were searched up until 22.

View Article and Find Full Text PDF

Background: Cortical acetylcholine released from cells in the basal forebrain facilitates cue detection and improves attentional performance. Cholinergic fibres to the cortex originate from the CH4 cell group, sometimes referred to as the Nucleus basalis of Meynert and the Nucleus subputaminalis of Ayala. The aim of this work was to investigate the effects of volumes of cholinergic nuclei on attention and executive function.

View Article and Find Full Text PDF