Urease and nitrification inhibitors can reduce ammonia and greenhouse gas emissions from fertilizers and manure but their effectiveness depends on the conditions under which they are used. Consequently, it is essential for the credibility of emission reductions reported in regulatory emission inventories that their effectiveness is assessed under real-world conditions and not just in the laboratory. Here, we specify the criteria we consider necessary before the effects of inhibitors are included in regulatory emission inventories.
View Article and Find Full Text PDFFeed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system.
View Article and Find Full Text PDFThis study provides a meta-analysis on the relationships between cattle barn CH, NH and NO emission rates and their key drivers (i.e., housing type, floor type, environmental conditions).
View Article and Find Full Text PDFUnderstanding the costs of emission abatement measures is essential for devising reduction efforts. It allows to identify cost-effective solutions to achieve target values set by international agreements or national policies. This work aims to summarize and discuss the current knowledge on costs and effects associated with selected ammonia (NH) mitigation measures in livestock production through comparison of country-specific and model-estimated values.
View Article and Find Full Text PDFAmmonia (NH) and nitrous oxide (NO) emissions from livestock manure management have a significant impact on air quality and climate change. There is an increasing urgency to improve our understanding of drivers influencing these emissions. We analysed the DATAMAN ("DATAbase for MANaging greenhouse gas and ammonia emissions factors") database to identify key factors influencing (i) NH emission factors (EFs) for cattle and swine manure applied to land and (ii) NO EFs for cattle and swine manure applied to land, and (iii) cattle urine, dung and sheep urine deposited during grazing.
View Article and Find Full Text PDF