Migratory shorebirds are one of the fastest declining groups of North American avifauna. Yet, relatively little is known about how these species select habitat during migration. We explored the habitat selection of Buff-breasted Sandpipers (Calidris subruficollis) during spring and fall migration through the Texas Coastal Plain, a major stopover region for this species.
View Article and Find Full Text PDFIn migratory animals, high mobility may reduce population structure through increased dispersal and enable adaptive responses to environmental change, whereas rigid migratory routines predict low dispersal, increased structure, and limited flexibility to respond to change. We explore the global population structure and phylogeographic history of the bar-tailed godwit, Limosa lapponica, a migratory shorebird known for making the longest non-stop flights of any landbird. Using nextRAD sequencing of 14,318 single-nucleotide polymorphisms and scenario-testing in an Approximate Bayesian Computation framework, we infer that bar-tailed godwits existed in two main lineages at the last glacial maximum, when much of their present-day breeding range persisted in a vast, unglaciated Siberian-Beringian refugium, followed by admixture of these lineages in the eastern Palearctic.
View Article and Find Full Text PDFBackground: Site fidelity, the tendency to return to a previously visited site, is commonly observed in migratory birds. This behaviour would be advantageous if birds returning to the same site, benefit from their previous knowledge about local resources. However, when habitat quality declines at a site over time, birds with lower site fidelity might benefit from a tendency to move to sites with better habitats.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) have shown great promise as delivery vehicles to transport messenger ribonucleic acid (mRNA) into cells and act as vaccines for infectious diseases including COVID-19 and influenza. The ionizable lipid incorporated within the LNP is known to be one of the main driving factors for potency and tolerability. Herein, we describe a novel family of ionizable lipids synthesized with a piperazine core derived from the HEPES Good buffer.
View Article and Find Full Text PDF