Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6.
View Article and Find Full Text PDFABT-072 is a non-nucleoside HCV NS5B polymerase inhibitor that was discovered as part of a program to identify new direct-acting antivirals (DAAs) for the treatment of HCV infection. This compound was identified during a medicinal chemistry effort to improve on an original lead, inhibitor 1, which we described in a previous publication. Replacement of the amide linkage in 1 with a trans-olefin resulted in improved compound permeability and solubility and provided much better pharmacokinetic properties in preclinical species.
View Article and Find Full Text PDFResearch toward a next-generation HCV NS5A inhibitor has identified fluorobenzimidazole analogs that demonstrate potent, broad-genotype in vitro activity against HCV genotypes 1-6 replicons as well as HCV NS5A variants that are orders of magnitude less susceptible to inhibition by first-generation NS5A inhibitors in comparison to wild-type replicons. The fluorobenzimidazole inhibitors have improved pharmacokinetic properties in comparison to non-fluorinated benzimidazole analogs. Discovery of these inhibitors was facilitated by exploring SAR in a structurally simplified inhibitor series.
View Article and Find Full Text PDFThe synthesis and structure-activity relationships of a novel aryl uracil series which contains a fused 5,6-bicyclic ring unit for HCV NS5B inhibition is described. Several analogs display replicon cell culture potencies in the low nanomolar range along with excellent rat pharmacokinetic values.
View Article and Find Full Text PDFA series of gem-dialkyl naphthalenone derivatives with varied alkyl substitutions were synthesized and evaluated according to their structure-activity relationship. This investigation led to the discovery of potent inhibitors of the hepatitis C virus at low nanomolar concentrations in both enzymatic and cell-based HCV genotype 1a assays.
View Article and Find Full Text PDF