Background: Integrating comprehensive information on hepatocellular carcinoma (HCC) is essential to improve its early detection. We aimed to develop a model with multi-modal features (MMF) using artificial intelligence (AI) approaches to enhance the performance of HCC detection.
Materials And Methods: A total of 1,092 participants were enrolled from 16 centers.
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.
View Article and Find Full Text PDFTumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells.
View Article and Find Full Text PDFDue to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
View Article and Find Full Text PDFNon-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics.
View Article and Find Full Text PDF