Publications by authors named "T W Jorgensen"

Ex situ living plant collections play a crucial role in providing nature-based solutions to twenty-first century global challenges. However, the complex dynamics of these artificial ecosystems are poorly quantified and understood, affecting biodiversity storage, conservation and utilization. To evaluate the management of ex situ plant diversity, we analysed a century of data comprising 2.

View Article and Find Full Text PDF

Purpose: The treatment of patellar dislocation is tailored based on the presence or absence of osseous risk factors. The purpose of this scoping review was to investigate whether existing research addresses patient differences by mapping the use of osseous risk factors and patient-reported outcome measures (PROMs) in studies investigating the treatment of patellar dislocation.

Methods: This study was a scoping review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for Scoping Reviews.

View Article and Find Full Text PDF

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Here, we report the resequencing, assembly, and annotation of two actinomycete genomes containing abyssomicin gene clusters. DSM 45791 with a circular chromosome of 11,681,598 bp and 4 circular plasmids (14,175-207,548 bp) and sp. NL15-2K with a 12,368,159 bp linear genome and circular plasmid (11,584 bp).

View Article and Find Full Text PDF

Background: Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives.

Results: We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies.

View Article and Find Full Text PDF