Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.
View Article and Find Full Text PDFChlorophyll-a (Chl-a) concentrations, a key indicator of algal blooms, were estimated using the XGBoost machine learning model with 23 variables, including water quality and meteorological factors. The model performance was evaluated using three indices: root mean square error (RMSE), RMSE-observation standard deviation ratio (RSR), and Nash-Sutcliffe efficiency. Nine datasets were created by averaging 1 hour data to cover time frequencies ranging from 1 hour to 1 month.
View Article and Find Full Text PDF