Publications by authors named "T W Harmon"

The α-helix is an abundant and functionally important element of protein secondary structure, which has motivated intensive efforts toward chemical strategies to stabilize helical folds. One such method is the incorporation of non-canonical backbone composition through an additional methyl substituent at the C atom. Examples of monomers include the achiral 2-aminoisobutyric acid (Aib) with geminal dimethyl substitution and chiral analogues with one methyl and one non-methyl substituent.

View Article and Find Full Text PDF

The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that also exert antimicrobial activity via Lipid II binding.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to investigate how individuals with aphasia experience communication challenges when background noise is present, hypothesizing they would face more stress and effort than those without aphasia.
  • - Eleven participants with aphasia and eleven matched controls took part in storytelling under various noise conditions, with results showing that those with aphasia reported significantly higher stress and effort levels.
  • - Qualitative analyses revealed that individuals with aphasia struggled more with aspects like ignoring noise and emotional regulation compared to controls, highlighting the need for therapy strategies that consider real-world noisy environments.
View Article and Find Full Text PDF

Socially effective vocal communication requires brain regions that encode expressive and receptive aspects of vocal communication in a social context-dependent manner. Here, we combined a novel behavioral assay with microendoscopy to interrogate neuronal activity in the posterior insula (pIns) in socially interacting mice as they switched rapidly between states of vocal expression and reception. We found that distinct but spatially intermingled subsets of pIns neurons were active during vocal expression and reception.

View Article and Find Full Text PDF

Vocal communication depends on distinguishing self-generated vocalizations from other sounds. Vocal motor corollary discharge (CD) signals are thought to support this ability by adaptively suppressing auditory cortical responses to auditory feedback. One challenge is that vocalizations, especially those produced during courtship and other social interactions, are accompanied by other movements and are emitted during a state of heightened arousal, factors that could potentially modulate auditory cortical activity.

View Article and Find Full Text PDF