Publications by authors named "T Vomastek"

Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes.

View Article and Find Full Text PDF

StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates.

View Article and Find Full Text PDF

Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function.

View Article and Find Full Text PDF

Background: Xrn1 exoribonuclease is the major mRNA degradation enzyme in In exponentially growing cells, Xrn1 is localised in the yeast cells and directs the degradation of mRNA molecules. Xrn1 is gradually deposited and presumably inactivated in the processing bodies (P-bodies) as the yeast population ages. Xrn1 can also localise to the membrane compartment of the arginine permease Can1/eisosome compartment at the yeast plasma membrane.

View Article and Find Full Text PDF

Quantitative phase imaging (QPI) is a powerful tool for label-free visualisation of living cells. Here, we compare two QPI microscopes - the Telight Q-Phase microscope and the Nanolive 3D Cell Explorer-fluo microscope. Both systems provide unbiased information about cell morphology, such as individual cell dry mass, perimeter and area.

View Article and Find Full Text PDF