Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbβ3 integrin ligand, SN528.
View Article and Find Full Text PDFFocal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed ("auto-inhibited") or open ("active") conformation.
View Article and Find Full Text PDFCell migration and mechanics are tightly regulated by the integrated activities of the various cytoskeletal networks. In cancer cells, cytoskeletal modulations have been implicated in the loss of tissue integrity and acquisition of an invasive phenotype. In epithelial cancers, for example, increased expression of the cytoskeletal filament protein vimentin correlates with metastatic potential.
View Article and Find Full Text PDFIntegrin-mediated focal adhesions (FAs) are large, multi-protein complexes that link the actin cytoskeleton to the extracellular matrix and take part in adhesion-mediated signaling. These adhesions are highly complex and diverse at the molecular level; thus, assigning particular structural or signaling functions to specific components is highly challenging. Here, we combined functional, structural and biophysical approaches to assess the role of a major FA component, namely, integrin-linked kinase (ILK), in adhesion formation.
View Article and Find Full Text PDF