Objective: Hearing disorders are common among music professionals, as they are frequently exposed to sound levels exceeding 100 dB(A). By assessing auditory fatigue, situations that are deleterious for hearing could be identified, allowing the deployment of preventive measures before permanent impairment occurs. However, little is known about the factors contributing to auditory fatigue.
View Article and Find Full Text PDFNumerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity.
View Article and Find Full Text PDFThis study aimed to assess temporary and permanent auditory effects associated with occupational coexposure to low levels of noise and solvents. Cross-sectional study with 25 printing industry workers simultaneously exposed to low noise (<80 dBA TWA) and low levels of solvents. The control group consisted of 29 industry workers without the selected exposures.
View Article and Find Full Text PDFToxicol In Vitro
September 2020
Despite well-documented neurotoxic and ototoxic properties, styrene remains commonly used in industry. Its effects on the cochlea have been extensively studied in animals, and epidemiological and animal evidence indicates an impact on balance. However, its influence on the peripheral vestibular receptor has yet to be investigated.
View Article and Find Full Text PDFBackground: Carbon disulfide (CS) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS exposure.
Methods: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS.