Publications by authors named "T Vagner"

Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer.

View Article and Find Full Text PDF

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.

View Article and Find Full Text PDF

Nanomaterials are characterized by an extremely large surface-to-volume ratio. Extracellular Vesicles (EVs) - which have been recently recognized as the universal agent of intercellular communication, being involved in many physiological and pathological processes and interkingdom biochemical communication - are nanoparticles, but this key aspect has never been rationally addressed. Here we report the first attempt to quantify the membrane-to-lumen partition of proteins in EVs.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein -acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (EVs) present in bodily fluids are emerging liquid biopsy markers for non-invasive cancer diagnosis and treatment monitoring. Because the majority of EVs in circulation are not of tumor origin, it is critical to develop new platforms capable of enriching tumor-derived EVs from the blood. Herein, we introduce a biostructure-inspired NanoVilli Chip, capable of highly efficient and reproducible immunoaffinity capture of tumor-derived EVs from blood plasma samples.

View Article and Find Full Text PDF