Using the example of N2-fixing legume-rhizobial symbiosis, we demonstrated that the origin and evolution of bacteria symbiotic for plants involve the following: 1) the formation of novel sym gene systems based on reorganizations of the bacterial genomes and on the gene transfer from the distant organisms; 2) the loss of genes encoding for functions that are required for autonomous performance but interfere with symbiotic functions (negative regulators of symbiosis). Therefore, the construction of effective rhizobia strains should involve improvement of sym genes activities (for instance, nif, fix, and dct genes, encoding for nitrogenase synthesis or for the energy supply of N2 fixation), as well as the inactivation of negative regulators of symbiosis identified in our lab (eff genes encoding for the transport of sugars, and the production of polysaccharides, and storage compounds, as well as for oxidative-reductive processes).
View Article and Find Full Text PDFThe TolC mutant Tr63 of Sinorhizobium meliloti was generated by random Tn5 mutagenesis in the effective strain SKhM1-188. The mutant did not produce fluorescent halos in UV light on the LB medium containing calcofluor white, which suggests that modification occurred in the production of exopolysaccharide EPS1. Mutant Tr63 also manifested nonmucoidness both on minimal and low-phosphate MOPS media, and this was most likely connected with the absence of the second exopolysaccharide of S.
View Article and Find Full Text PDFA comparative study of the lipopolysaccharides (LPS) isolated from Sinorhizobium meliloti SKHM 1-188 and two its LPS-mutants (Th29 and Ts22) with sharply decreased nodulation competitiveness was conducted. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate revealed two forms of LPS in all the three strains: a higher molecular-weight LPS1, containing O-polysaccharide (O-PS), and a and lower molecular-weight LPS2 without O-PS. However, the LPS1 content in mutants was significantly smaller than in the parent strain.
View Article and Find Full Text PDFThe study of the effect of the periplasmic glucan isolated from the root-nodule bacterium S. meliloti CXM1-188 on the symbiosis of another strain (441) of the same root-nodule bacterium with alfalfa plants showed that this effect depends on the treatment procedure. The pretreatment of alfalfa seedlings with the glucan followed by their bacterization with S.
View Article and Find Full Text PDFA possibility has been demonstrated to use laser spectroscopy of bacterial glycopolymers by means of measurement of their water solutions fluorescence. Comparative investigations of native lipopolysaccharide (LPS) Ralstonia solanacearum and its structure components permits a supposition to be made that the LPS total spectrum is a result of superposition of the spectrum of O-specific polysaccharide and core oligosaccharide as well as core oligosaccharide and lipid A. The LPS spectrum maximum shift is determined by core oligosaccharide and lipid A luminescence contribution.
View Article and Find Full Text PDF