Poly-(4,4'-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem.
View Article and Find Full Text PDFDifferent types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp carbon backbone, embedded with a percolating network of sp carbon domains to sustain neuronal cultures.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2014
Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection.
View Article and Find Full Text PDFThe aim of the study was to entrap delta-sleep inducing peptide (DSIP) in cross-linked poly(vinyl alcohol)-based hydrogels of different structures and to evaluate peptide release kinetics from these hydrogels using an in vitro model. Isotropic and macroporous hydrogels on the basis of poly(vinyl alcohol) acrylic derivative (Acr-PVA) as well as macroporous hydogels containing epoxy groups which were synthesized by copolymerization of this monomer with glycidyl methacrylate. The isotropic hydrogels were fabricated at positive temperatures while the macroporous hydrogels (cryogels) were prepared at the temperatures below zero.
View Article and Find Full Text PDFThe process of association-dissociation of hemoglobin molecules into dimers of its subunits in water-saline solutions is studied by the method of gel-penetrating chromatography and ultrafiltration. The quantitative assessment of stabilization of quaternary structure of hemoglobin in chemically bound polymer derivative in comparison with native peptide on the basis of building differential concentration curves is conducted for the first time. By the method of atomic-force spectroscopy, the morphology of nanoparticles of hemoglobin and its modified polymeric derivative is studied.
View Article and Find Full Text PDF