Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries.
View Article and Find Full Text PDFAging is the major risk factor of the most common (∼95% of cases) sporadic Alzheimer's disease (AD). Accumulating data indicate middle age as a critical period for the relevant pathological processes, however, the question of when AD starts to develop remains open. It has been reported only recently that in the early postnatal period-when brain development is completing-preconditions for a decrease in cognitive abilities and for accelerated aging can form.
View Article and Find Full Text PDFTemozolomide (TMZ) is a conventional chemotherapy drug for adjuvant treatment of glioblastoma multiforme (GBM), often accompanied by dexamethasone (DXM) to prevent brain oedema and alleviate clinical side effects. Here, we aimed to investigate an ability of the drugs to affect normal brain tissue in terms of proteoglycan (PG) composition/content in experimental rat model . Age- and brain zone-specific transcriptional patterns of PGs were demonstrated for 8, 60, and 120 days old rats, and syndecan-1, glypican-1, decorin, biglycan, and lumican were identified as the most expressed PGs.
View Article and Find Full Text PDFThe effects of bone marrow regulatory peptides--myelopeptides 1-6--in mouse neuroblastoma C-1300 were studied. Cultivation in presence of myelopeptides stimulated morphological differentiation of neuroblasts. Neuroprotective abilities of myelopeptides were shown on the models of morphine toxity and oxygen-glucose deprivation in neuroblastoma cell culture.
View Article and Find Full Text PDFThe neuritogenic and neuroprotective activities of six starfish polar steroids, asterosaponin Р₁, (25S)-5α-cholestane-3β,4β,6α,7α,8,15α,16β,26-octaol, and (25S)-5α-cholestane-3β,6α,7α,8,15α,16β,26-heptaol (1-3) from the starfish Patiria pectinifera and distolasterosides D₁-D₃ (4-6) from the starfish Distolasterias nipon were analyzed using the mouse neuroblastoma (NB) C-1300 cell line and an organotypic rat hippocampal slice culture (OHSC). All of these compounds enhanced neurite outgrowth in NB cells. Dose-dependent responses to compounds 1-3 were observed within the concentration range of 10-100 nM, and dose-dependent responses to glycosides 4-6 were observed at concentrations of 1-50 nM.
View Article and Find Full Text PDF