In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves.
View Article and Find Full Text PDFQuantitative studies are conducted into the absolute pressure values of the acoustical and shock waves generated and propagating in a biotissue under pulsed (tau p = 50 ns) UV (lambda = 308 nm) laser irradiation (below and above the ablation threshold). Powerful (several hundreds of bars in pressure) high-frequency (f approximately 10(7) Hz) acoustic compression and rarefaction pulses are found to be generated in the biotissue. The amplitudes and profiles of the acoustic pulses developing in atherosclerotic human aorta tissues and an aqueous CuCl2 solution under laser irradiation are investigated as a function of the laser pulse energy fluence.
View Article and Find Full Text PDF