Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions.
View Article and Find Full Text PDFMost of the mechnoregulatory computational models appearing so far in tissue engineering for bone healing predictions, utilize as regulators for cell differentiation mainly the octahedral volume strains and the interstitial fluid velocity calculated at any point of the fractured bone area and controlled by empirical constants concerning these two parameters. Other stimuli like the electrical and chemical signaling of bone constituents are covered by those two regulatory fields. It is apparent that the application of the same mechnoregulatory computational models for bone healing predictions in scaffold-aided regeneration is questionable since the material of a scaffold disturbs the signaling pathways developed in the environment of bone fracture.
View Article and Find Full Text PDFQuantitative ultrasound is a promising and relative recent method for the assessment of bone. In this work, the interaction of ultrasound with the porosity of cortical bone is investigated for different frequencies. Emphasis is given on the study of complex scattering effects induced by the propagation of an ultrasonic wave in osseous tissues.
View Article and Find Full Text PDFThe propagation of ultrasound in healing long bones induces complex scattering phenomena due to the interaction of an ultrasonic wave with the composite nature of callus and osseous tissues. This work presents numerical simulations of ultrasonic propagation in healing long bones using the boundary element method aiming to provide insight into the complex scattering mechanisms and better comprehend the state of bone regeneration. Numerical models of healing long bones are established based on scanning acoustic microscopy images from successive postoperative weeks considering the effect of the nonhomogeneous callus structure.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Competent fracture healing monitoring and treatment requires an extensive knowledge of bone biology and microstructure. The use of non-invasive and non-radiating means for the monitoring of the bone healing process has gained significant interest in recent years. Ultrasound is considered as a modality which can contribute to the assessment of bone status during the healing process, as well as, enhance the rate of the tissues' ossification.
View Article and Find Full Text PDF