Publications by authors named "T Usero Barcena"

The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The '4 per 1000' (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.

View Article and Find Full Text PDF

Chronosequences are commonly used to assess soil organic carbon (SOC) sequestration after land-use change, but SOC dynamics predicted by this space-for-time substitution approach have rarely been validated by resampling. We conducted a combined chronosequence/resampling study in a former cropland area (Vestskoven) afforested with oak (Quercus robur) and Norway spruce (Picea abies) over the past 40 years. The aims of this study were (i) to compare present and previous chronosequence trends in forest floor and top mineral soil (0-25 cm) C stocks; (ii) to compare chronosequence estimates with current rates of C stock change based on resampling at the stand level; (iii) to estimate SOC changes in the subsoil (25-50 cm); and (iv) to assess the influence of two tree species on SOC dynamics.

View Article and Find Full Text PDF

Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land-use changes during the past decades. However, this region has not been well represented in previous large-scale syntheses of land-use change effects on SOC, especially regarding effects of afforestation. Therefore, we conducted a meta-analysis of SOC stock change following afforestation in Northern Europe.

View Article and Find Full Text PDF