Publications by authors named "T Uphues"

This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors' ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area.

View Article and Find Full Text PDF

In this article we present a theoretical investigation of gold-silica-gold nanostructures and their properties depending on layer thickness and diameter. We found a remarkable sensitive behavior in the coupling of surface and bulk plasmons with respect to the outer geometry of the disk-like resonators leading to a superposition of distinct modes with a time-dependent amplitude structure. Furthermore, we show a rather complex temporal evolution of plasmonic surface modes depending on the top layer thickness and the asymmetry of the metal disk radii.

View Article and Find Full Text PDF

We propose an experimental arrangement to image, with attosecond resolution, transient surface plasmonic excitations. The required modifications to state-of-the-art setups used for attosecond streaking experiments from solid surfaces only involve available technology. Buildup and lifetimes of surface plasmon polaritons can be extracted and local modulations of the exciting optical pulse can be diagnosed in situ.

View Article and Find Full Text PDF

We describe an apparatus for attosecond photoelectron spectroscopy of solids and surfaces, which combines the generation of isolated attosecond extreme-ultraviolet (XUV) laser pulses by high harmonic generation in gases with time-resolved photoelectron detection and surface science techniques in an ultrahigh vacuum environment. This versatile setup provides isolated attosecond pulses with photon energies of up to 140 eV and few-cycle near infrared pulses for studying ultrafast electron dynamics in a large variety of surfaces and interfaces. The samples can be prepared and characterized on an atomic scale in a dedicated flexible surface science end station.

View Article and Find Full Text PDF

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP.

View Article and Find Full Text PDF