The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one.
View Article and Find Full Text PDFTo search for low-energy resonant structures in isospin T=3/2 three-body systems, we have performed the experiments ^{3}H(t,^{3}He)3n and ^{3}He(^{3}He,t)3p at intermediate energies. For the 3n experiment, we have newly developed a thick Ti-^{3}H target that has the largest tritium thickness among targets of this type ever made. The 3n experiment for the first time covered the momentum-transfer region as low as 15 MeV/c, which provides ideal conditions for producing fragile systems.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2024
Well-developed [Formula: see text] clusters are known to exist in light [Formula: see text] nuclei, and their properties are reasonably well described with modern nuclear structure theories. However, 'modestly' developed clusters in medium to heavy nuclei remain little understood, both theoretically and experimentally. Extension of the focus to include modestly developed clusters leads us to a concept of 'generalized clusters' and 'cluster ubiquitousness'.
View Article and Find Full Text PDFThe structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.
View Article and Find Full Text PDFThe generation of spin polarization is key in quantum information science and dynamic nuclear polarization. Polarized electron spins with long spin-lattice relaxation times () at room temperature are important for these applications but have been difficult to achieve. We report the realization of spin-polarized radicals with extremely long at room temperature in a metal-organic framework (MOF) in which azaacene chromophores are densely integrated.
View Article and Find Full Text PDF