Publications by authors named "T Udem"

We present an improved active fiber-based retroreflector (AFR) providing high-quality wavefront-retracing anti-parallel laser beams in the near UV. We use our improved AFR for first-order Doppler-shift suppression in precision spectroscopy of atomic hydrogen, but our setup can be adapted to other applications where wavefront-retracing beams with defined laser polarization are important. We demonstrate how weak aberrations produced by the fiber collimator may remain unobserved in the intensity of the collimated beam but limit the performance of the AFR.

View Article and Find Full Text PDF

We have performed two-photon ultraviolet direct frequency comb spectroscopy on the 1S-3S transition in atomic hydrogen to illuminate the so-called proton radius puzzle and to demonstrate the potential of this method. The proton radius puzzle is a significant discrepancy between data obtained with muonic hydrogen and regular atomic hydrogen that could not be explained within the framework of quantum electrodynamics. By combining our result [ = 2,922,743,278,665.

View Article and Find Full Text PDF

Optical frequency combs were introduced around 20 years ago as a laser technology that could synthesize and count the ultrafast rate of the oscillating cycles of light. Functioning in a manner analogous to a clockwork of gears, the frequency comb phase-coherently upconverts a radio frequency signal by a factor of [Formula: see text] to provide a vast array of evenly spaced optical frequencies, which is the comb for which the device is named. It also divides an optical frequency down to a radio frequency, or translates its phase to any other optical frequency across hundreds of terahertz of bandwidth.

View Article and Find Full Text PDF

The quantum Zeno effect (QZE) is not only interesting as a manifestation of the counterintuitive behavior of quantum mechanics, but may also have practical applications. When a spectroscopy laser is applied to target atoms or ions prepared in an initial state, the Rabi flopping of an auxiliary transition sharing one common level can be inhibited. This effect is found to be strongly dependent on the detuning of the spectroscopy laser and offers a sensitive spectroscopy signal which allows for high precision spectroscopy of transitions with a small excitation rate.

View Article and Find Full Text PDF