Publications by authors named "T Tsuzuku"

Lipid nanoparticles (LNP) modified with cell-penetrating peptides (CPP) were prepared for the delivery of small interfering RNA (siRNA) into cells. Lipid derivatives of CPP derived from protamine were newly synthesized and used to prepare CPP-decorated LNP (CPP-LNP). Encapsulation of siRNA into CPP-LNP improved the stability of the siRNA in serum.

View Article and Find Full Text PDF

In the development of nucleic acid medicines such as small interfering RNA (siRNA) drugs, one problem is how to study the pharmacokinetics and pharmacodynamics, since the precise in vivo behavior of siRNA is hard to detect. In this research, to establish a highly sensitive detection system of siRNA biodistribution in the whole body, the technology of positron imaging was applied. First, a one-step synthetic method in which double-stranded siRNA was directly labeled by a positron emitter, (18)F, was developed.

View Article and Find Full Text PDF

Previously we developed dicetyl phosphate-tetraethylenepentamine-based polycation liposomes (TEPA-PCL) for use in small interfering RNA (siRNA) therapy. In the present study, mammalian target of rapamycin (mTOR) expression in cancer cells was silenced with mTOR-siRNA (simTOR) formulated in TEPA-PCL modified with Ala-Pro-Arg-Pro-Gly (APRPG), a peptide having affinity for vascular endothelial growth factor receptor-1 (VEGFR-1). We investigated the effects of inhibition of mTOR, focusing on the differences between cells treated with simTOR and those with rapamycin in terms of Akt (ser473) phosphorylation and antiproliferative effects.

View Article and Find Full Text PDF

Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency.

View Article and Find Full Text PDF

In 1999, three workers received high doses of radiation in a small Japanese plant while they were preparing fuel for an experimental reactor. This criticality accident at melting point was caused by the addition of too much uranium enriched to a relatively high level, causing a 'criticality' (a limited uncontrolled nuclear chain reaction), which continued intermittently for 20 h. The three workers concerned were hospitalized, two in a critical condition.

View Article and Find Full Text PDF