Publications by authors named "T Tsukiya"

This review traces the evolution of centrifugal blood pumps in mechanical circulatory support (MCS) systems. Initially met with concerns over blood damage and thrombus formation, centrifugal pumps have become crucial components in ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) due to their simplified drive mechanisms and adaptability. This paper outlines three generations of centrifugal pump development: first-generation pumps with sealing components, second-generation pumps utilizing pivot bearings, and third-generation pumps employing contactless bearings.

View Article and Find Full Text PDF

Impella is a mechanical circulatory support device of a catheter-based intravascular microaxial pump for left ventricular support and unloading. However, nonclinical studies assessing the effects of the extended duration of left ventricular unloading on cardiac recovery are lacking. An animal model using Impella implanted with a less invasive procedure to enable long-term support is required.

View Article and Find Full Text PDF

Asynchronous rotational-speed modulation of a continuous-flow left ventricular assist device (LVAD) can increase pulsatility; however, the feasibility of hemodynamic modification by asynchronous modulation of an LVAD has not been sufficiently verified. We evaluated the acute effect of an asynchronous-modulation mode under LVAD support and the accumulated effect of 6 consecutive hours of driving by the asynchronous-modulation mode on hemodynamics, including both ventricles, in a coronary microembolization-induced acute-myocardial injury sheep model. We evaluated 5-min LVAD-support hemodynamics, including biventricular parameters, by switching modes from constant-speed to asynchronous-modulation in the same animals ("acute-effect evaluation under LVAD support").

View Article and Find Full Text PDF

We developed a new artificial placenta (AP) system consisting of a loop circuit configuration extracorporeal membrane oxygenation (ECMO) with a bridge circuit designed to be applied to the fetus in the form of an umbilical arterial-venous connection. We aimed to evaluate the feasibility of the AP system by performing a hydrodynamic simulation using a mechanical mock circulation system and fetal animal experiment. The effect of the working condition of the AP system on the fetal hemodynamics was evaluated by hydrodynamic simulation using a mechanical mock circulation system, assuming the weight of the fetus to be 2 kg.

View Article and Find Full Text PDF

Background: A heart failure (HF) model using coronary microembolization in large animals is indispensable for medical research. However, the heterogeneity of myocardial response to microembolization is a limitation. We hypothesized that adjusting the number of injected microspheres according to coronary blood flow could stabilize the severity of HF.

View Article and Find Full Text PDF