Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which are categorized in the CAZy database under auxiliary activities families AA9-11, 13, 14-17. Secreted by various microorganisms, they play a crucial role in carbon recycling, particularly in fungal saprotrophs. LPMOs oxidize polysaccharides through monooxygenase/peroxygenase activities and exhibit peroxidase and oxidase activities, with variations among different families.
View Article and Find Full Text PDFThe Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls.
View Article and Find Full Text PDFXyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations.
View Article and Find Full Text PDFXylan is the most abundant non-cellulosic polysaccharide in grass cell walls, and it has important structural roles. The name glucuronoarabinoxylan (GAX) is used to describe this variable hemicellulose. It has a linear backbone of β-1,4-xylose (Xyl) residues that may be substituted with α-1,2-linked (4-O-methyl)-glucuronic acid (GlcA), α-1,3-linked arabinofuranose (Araf), and sometimes acetylation at the O-2 and/or O-3 positions.
View Article and Find Full Text PDFEndo-type xylanases are key enzymes in microbial xylanolytic systems, and xylanases belonging to glycoside hydrolase (GH) families 10 or 11 are the major enzymes degrading xylan in nature. These enzymes have typically been characterized using xylan prepared by alkaline extraction, which removes acetyl sidechains from the substrate, and thus the effect of acetyl groups on xylan degradation remains unclear. Here, we compare the ability of GH10 and 11 xylanases, Xyn10A and Xyn11B, from the white-rot basidiomycete to degrade acetylated and deacetylated xylan from various plants.
View Article and Find Full Text PDF