Priority substances likely to pollute water can be characterized by mid-infrared spectroscopy based on their specific absorption spectral signature. In this work, the detection of volatile aromatic molecules in the aqueous phase by evanescent-wave spectroscopy has been optimized to improve the detection efficiency of future optical sensors based on chalcogenide waveguides. To this end, a hydrophobic polymer was deposited on the surface of a zinc selenide prism using drop and spin-coating methods.
View Article and Find Full Text PDFWe report a detailed investigation on the second harmonic generation (SHG) emission from single 150 nm diameter non-centrosymmetric gold nanoparticles. Polarization-resolved analysis together with scanning electron microscopy images shows that these nanostructures exhibit a unique polarization-sensitive SHG that depends strongly on the particle's shape. An analytical approach based on multipolar analysis is introduced to link SHG properties to the nanoparticles' shape.
View Article and Find Full Text PDFNanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised "click" reaction in the vicinity of gold nanostructures under unfavourable experimental conditions.
View Article and Find Full Text PDFWe have developed a new electrochemical etching procedure to fabricate gold tips with sub-50 nm apical radius of curvature with a production yield of 80% and production time lower than 5 min. The technique is based on a two-step self-terminating process in which a gold wire is first quickly (<1 min) pre-etched in an hydrochloric acid (HCl)∕ethanol solution at high voltage (10 VDC), and then slowly (2-4 min) etched at lower voltages (<2.5 VDC).
View Article and Find Full Text PDFWe report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.
View Article and Find Full Text PDF