Publications by authors named "T Tougas"

The multi-stage cascade impactor (CI) is the mainstay method for the determination of the aerodynamic particle size distribution (APSD) of aerosols emitted from orally inhaled products (OIPs). CIs are designed to operate at a constant flow rate throughout the measurement process. However, it is necessary to mimic an inhalation maneuver to disperse the powder into an aerosol when testing passive dry powder inhalers (DPIs), which constitute a significant portion of available products in this inhaler class.

View Article and Find Full Text PDF

This article reports on results from a two-lab, multiple impactor experiment evaluating the abbreviated impactor measurement (AIM) concept, conducted by the Cascade Impaction Working Group of the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of this experiment was to expand understanding of the performance of an AIM-type apparatus based on the Andersen eight-stage non-viable cascade impactor (ACI) for the assessment of inhalation aerosols and sprays, compared with the full-resolution version of that impactor described in the pharmacopeial compendia. The experiment was conducted at two centers with a representative commercially available pressurized metered dose inhaler (pMDI) containing albuterol (salbutamol) as active pharmaceutical ingredient (API).

View Article and Find Full Text PDF

The performance of two quality control (QC) tests for aerodynamic particle size distributions (APSD) of orally inhaled drug products (OIPs) is compared. One of the tests is based on the fine particle dose (FPD) metric currently expected by the European regulators. The other test, called efficient data analysis (EDA), uses the ratio of large particle mass to small particle mass (LPM/SPM), along with impactor sized mass (ISM), to detect changes in APSD for QC purposes.

View Article and Find Full Text PDF

The purpose of this article is to review the suitability of the analytical and statistical techniques that have thus far been developed to assess the dissolution behavior of particles in the respirable aerodynamic size range, as generated by orally inhaled products (OIPs) such as metered-dose inhalers and dry powder inhalers. The review encompasses all analytical techniques publicized to date, namely, those using paddle-over-disk USP 2 dissolution apparatus, flow-through cell dissolution apparatus, and diffusion cell apparatus. The available techniques may have research value for both industry and academia, especially when developing modified-release formulations.

View Article and Find Full Text PDF

This article proposes new terminology that distinguishes between different concepts involved in the discussion of the shelf life of pharmaceutical products. Such comprehensive and common language is currently lacking from various guidelines, which confuses implementation and impedes comparisons of different methodologies. The five new terms that are necessary for a coherent discussion of shelf life are: true shelf life, estimated shelf life, supported shelf life, maximum shelf life, and labeled shelf life.

View Article and Find Full Text PDF