Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.
View Article and Find Full Text PDFRho GTPases regulate cell morphogenesis and motility under the tight control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the underlying mechanism(s) that coordinate their spatiotemporal activities, whether separately or together, remain unclear. We show that a prometastatic RhoGAP, ARHGAP8/BPGAP1, binds to inactive Rac1 and localizes to lamellipodia.
View Article and Find Full Text PDFRho GTPases and Hippo kinases are key regulators of cardiomyoblast differentiation. However, how these signaling axes are coordinated spatiotemporally remains unclear. Here, the central and multifaceted roles of the BCH domain containing protein, BNIP-2, in orchestrating the expression of two key cardiac genes (cardiac troponin T [cTnT] and cardiac myosin light chain [Myl2]) in H9c2 and human embryonic stem cell-derived cardiomyocytes are delineated.
View Article and Find Full Text PDF