Some of the climate-sensitive infections (CSIs) affecting humans are zoonotic vector-borne diseases, such as Lyme borreliosis (BOR) and tick-borne encephalitis (TBE), mostly linked to various species of ticks as vectors. Due to climate change, the geographical distribution of tick species, their hosts, and the prevalence of pathogens are likely to change. A recent increase in human incidences of these CSIs in the Nordic regions might indicate an expansion of the range of ticks and hosts, with vegetation changes acting as potential predictors linked to habitat suitability.
View Article and Find Full Text PDFRecognition of climate-sensitive infectious diseases is crucial for mitigating health threats from climate change. Recent studies have reasoned about potential climate sensitivity of diseases in the Northern/Arctic Region, where climate change is particularly pronounced. By linking disease and climate data for this region, we here comprehensively quantify empirical climate-disease relationships.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2020
Throughout history, humans have experienced epidemics. The balance of living in nature encircled by microorganisms is delicate. More than 70% of today's emerging infections are zoonotic, i.
View Article and Find Full Text PDFBackground: General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern.
View Article and Find Full Text PDF