The polymer gel dosimeter has been proposed for use as a 3D dosimeter for complex dose distribution measurement of high dose-rate (HDR) brachytherapy. However, various shapes of catheter/applicator for sealed radioactive source transport used in clinical cases must be placed in the gel sample. The absorbed dose readout for the magnetic resonance (MR)-based polymer gel dosimeters requires calibration data for the dose-transverse relaxation rate (R2) response.
View Article and Find Full Text PDFDose distributions have become more complex with the introduction of image-guided brachytherapy in high-dose-rate (HDR) brachytherapy treatments. Therefore, to correctly execute HDR, conducting a quality assurance programme for the remote after-loading system and verifying the dose distribution in the patient treatment plan are necessary. The characteristics of the dose distribution of HDR brachytherapy are that the dose is high near the source and rapidly drops when the distance from the source increases.
View Article and Find Full Text PDFPurpose: The purpose of this study was to develop a novel quality assurance (QA) program to check the entire treatment chain of image-guided brachytherapy with dose distribution evaluation in a single setup and irradiation using a gel dosimeter.
Methods And Materials: A polymer gel was used, and the readout was performed by magnetic resonance scanning. A CT-based treatment plan was generated using the Oncentra planning system (Elekta, Sweden), and irradiation was performed three times using an afterloading device with an Ir-192 source.
Rapid technological advances in high-dose-rate brachytherapy have led to a requirement for greater accuracy in treatment planning system calculations and in the verification of dose distributions. In high-dose-rate brachytherapy, it is important to measure the dose distribution in the low-dose region at a position away from the source in addition to the high-dose range in the proximity of the source. The aim of this study was to investigate the accuracy of a treatment plan designed for prostate cancer in the low-dose range using a normoxic N-vinylpyrrolidone-based polymer gel (VIPET gel) dosimeter containing inorganic salt as a sensitizer (iVIPET).
View Article and Find Full Text PDFThe transportation accuracy of sealed radioisotope sources influences the therapeutic effect of high-dose-rate (HDR) brachytherapy. We have developed a pinhole imaging system for tracking an Ir-192 radiation source during HDR brachytherapy treatment. Our system consists of a dual-pinhole collimator, a scintillator, and a charge-coupled device (CCD) camera.
View Article and Find Full Text PDF