The abnormal expansion of GGGGCC hexanucleotide repeats within the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of GGGGCC repeat-containing RNAs as RNA foci, and the deposition of dipeptide repeat proteins (DPR) produced from these repeat RNAs by unconventional translation are major pathological hallmarks of C9orf72-linked ALS/FTD (C9-ALS/FTD), and are both thought to play a crucial role in the pathogenesis of these diseases. Because GGGGCC repeat RNA is likely to be the most upstream therapeutic target in the pathogenic cascade of C9-ALS/FTD, lowering the cellular level of GGGGCC repeat RNA is expected to mitigate repeat RNA toxicity, and will therefore be a disease-modifying therapeutic strategy for the treatment of C9-ALS/FTD.
View Article and Find Full Text PDFBackground: Paramyotonia congenita (PC; OMIM 168300) is a non-dystrophic myotonia caused by mutations in the SCN4A gene. Transient muscle stiffness, usually induced by exposure to cold and aggravated by exercise, is the predominant clinical symptom, and interictal persistent weakness is uncommon.
Case Report: We report a family with a history of PC accompanied by persistent hand muscle weakness with masticatory muscle involvement.
In the vertebrate body, a metameric structure is present along the anterior-posterior axis. Zebrafish tbx6 larvae, in which somite boundaries do not form during embryogenesis, were shown to exhibit abnormal skeletal morphology such as rib, neural arch and hemal arch. In this study, we investigated the role of somite patterning in the formation of anterior vertebrae and ribs in more detail.
View Article and Find Full Text PDF