Publications by authors named "T Tamatani"

Accumulating evidence suggests that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in the pathology of spinal cord injury (SCI). To determine the role of the UPR-target molecule in the pathophysiology of SCI, we analyzed the expression and the possible function of calreticulin (CRT), a molecular chaperone in the ER with high Ca binding capacity, in a mouse SCI model. Spinal cord contusion was induced in T9 by using the Infinite Horizon impactor.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited.

View Article and Find Full Text PDF

While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b mice under both normal and ER stress conditions.

View Article and Find Full Text PDF

N-myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family, has multiple functions in cell proliferation, differentiation, and stress responses, and is predominantly expressed by astrocytes in the central nervous system. Previous studies including ours demonstrated that NDRG2 is involved in various central nervous system pathologies. However, the significance of NDRG2 in neurodevelopment is not fully understood.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) exhibit self-replication, self-differentiation, drug resistance and immune evasion activities. In recent years CSCs have become increasingly important for the treatment of malignant tumors. CSCs express specific markers, including cluster of differentiation (CD)44, CD44 variant 9 (CD44v9), ATP-binding cassette sub-family G member 2 (ABCG2), CD24, B lymphoma Mo-MLV insertion region 1 homolog (BMI-1) and aldehyde dehydrogenase 1 (ALDH1).

View Article and Find Full Text PDF