Publications by authors named "T T M Palstra"

Article Synopsis
  • Superconductors can exhibit a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state due to the Zeeman effect from an external magnetic field, which affects Cooper pairings when symmetries like time-reversal are broken.
  • In materials lacking local inversion symmetry, the interplay of the Zeeman effect with spin-orbit coupling (SOC), especially Rashba SOC, allows for the emergence of more accessible Rashba FFLO states across a larger area of the phase diagram.
  • The discovery of an unconventional orbital FFLO state in the multilayer Ising superconductor 2H-NbSe offers a new understanding of finite-momentum superconductivity, featuring a defined phase diagram that identifies multiple
View Article and Find Full Text PDF

Resonant ultrasound spectroscopy has been used to characterise strain coupling and relaxation behavior associated with magnetic/magnetoelectric phase transitions in GdMnO, TbMnOand TbMnFeOthrough their influence on elastic/anelastic properties. Acoustic attenuation ahead of the paramagnetic to colinear-sinusoidal incommensurate antiferromagnetic transition at ∼41 K correlates with anomalies in dielectric properties and is interpreted in terms of Debye-like freezing processes. A loss peak at ∼150 K is related to a steep increase in electrical conductivity with a polaron mechanism.

View Article and Find Full Text PDF

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior.

View Article and Find Full Text PDF

Electrically controllable magnetism, which requires the field-effect manipulation of both charge and spin degrees of freedom, has attracted growing interest since the emergence of spintronics. We report the reversible electrical switching of ferromagnetic (FM) states in platinum (Pt) thin films by introducing paramagnetic ionic liquid (PIL) as the gating media. The paramagnetic ionic gating controls the movement of ions with magnetic moments, which induces itinerant ferromagnetism on the surface of Pt films, with large coercivity and perpendicular anisotropy mimicking the ideal two-dimensional Ising-type FM state.

View Article and Find Full Text PDF

The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((CHCHNH)PbI) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.

View Article and Find Full Text PDF