Publications by authors named "T Szikra"

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry.

View Article and Find Full Text PDF

Enabling near-infrared light sensitivity in a blind human retina may supplement or restore visual function in patients with regional retinal degeneration. We induced near-infrared light sensitivity using gold nanorods bound to temperature-sensitive engineered transient receptor potential (TRP) channels. We expressed mammalian or snake TRP channels in light-insensitive retinal cones in a mouse model of retinal degeneration.

View Article and Find Full Text PDF

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies.

View Article and Find Full Text PDF

Vertebrate vision relies on two types of photoreceptors, rods and cones, which signal increments in light intensity with graded hyperpolarizations. Rods operate in the lower range of light intensities while cones operate at brighter intensities. The receptive fields of both photoreceptors exhibit antagonistic center-surround organization.

View Article and Find Full Text PDF

The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged.

View Article and Find Full Text PDF