Publications by authors named "T Sulea"

We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.

View Article and Find Full Text PDF

The near neutral p of histidine is commonly exploited to engineer pH-sensitive biomolecules. For example, histidine mutations introduced in the complementarity-determining region (CDR) of therapeutic antibodies can enhance selectivity for antigens in the acidic microenvironment of solid tumors or increase dissociation rates in the acidic early endosomes of cells. While solvent-exposed histidines typically have a p near 6.

View Article and Find Full Text PDF

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF
Article Synopsis
  • * A new computational method called SIpHAB has been developed to predict pH-sensitive mutations in antibodies using their amino acid sequences, making the design process more efficient.
  • * SIpHAB has been validated on multiple antibody-antigen systems and is available online for free, allowing researchers to better target therapies based on pH levels in tumor environments.
View Article and Find Full Text PDF