Publications by authors named "T Stehle"

The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53.

View Article and Find Full Text PDF

Background: Stimulated Raman histology (SRH) is a label-free optical imaging method for rapid intraoperative analysis of fresh tissue samples. Analysis of SRH images using Convolutional Neural Networks (CNN) has shown promising results for predicting the main histopathological classes of neurooncological tumors. Due to the relatively low number of rare tumor representations in CNN training datasets, a valid prediction of rarer entities remains limited.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate intraoperative diagnosis of primary CNS lymphoma (PCNSL) is vital for surgical decisions but is challenging due to similar features with other CNS diseases; a new method combines stimulated Raman histology (SRH) with deep learning to improve this process.
  • The RapidLymphoma system uses a portable Raman microscope to create virtual images of tissue samples in under three minutes and employs a deep learning model trained on 54,000 images, allowing it to detect PCNSL and differentiate it from other conditions effectively.
  • In testing, RapidLymphoma achieved a high accuracy rate of 97.81%, performing better than traditional methods, and demonstrated its capability to identify specific histological features crucial for diagnosis, providing quick feedback
View Article and Find Full Text PDF
Article Synopsis
  • * NgR1 binds to the reovirus capsid in a specific way, influencing how the virus interacts with cells in the central nervous system.
  • * The research reveals that the structure and shape of both NgR1 and the virus are critical for their binding stability, paving the way for potential new treatments for viral infections.
View Article and Find Full Text PDF

Halogen bonding is a valuable interaction in drug design, offering an unconventional way to influence affinity and selectivity by leveraging the halogen atoms' ability to form directional bonds. The present study evaluates halogen-water interactions within protein binding sites, demonstrating that targeting a water molecule via halogen bonding can in specific cases contribute beneficially to ligand binding. In solving and examining the crystal structure of 2-cyclopentyl-7-iodo-1-indole-3-carbonitrile bound to DYRK1a kinase, we identified a notable iodine-water interaction, where water accepts a halogen bond with good geometric and energetic features.

View Article and Find Full Text PDF