Publications by authors named "T Solis-Escalante"

Introduction: Reactive stepping capacity to recover from a loss of balance declines with aging, which increases the risk of falling. To gain insight into the underlying mechanisms, we investigated whether muscle coordination patterns of reactive stepping differed between healthy young and older individuals.

Methods: We performed a cross-sectional study between 15 healthy young and 14 healthy older adults.

View Article and Find Full Text PDF

Background: Persons with a transfemoral amputation (TFA) often experience difficulties in daily-life ambulation, including an asymmetrical and less stable gait pattern and a greater cognitive demand of walking. However, it remains unclear whether this is effected by the prosthetic suspension, as eliminating the non-rigid prosthetic connection may influence stability and cortical activity during walking. Spatiotemporal and stability-related gait parameters, as well as cortical activity during walking, were evaluated between highly active individuals (MFC-level K3-4) with a TFA and able-bodied (AB) persons, and between persons with a bone-anchored prosthesis (BAP) and those with a socket-suspended prosthesis (SSP).

View Article and Find Full Text PDF

Balance recovery often relies on successful stepping responses, which presumably require precise and rapid interactions between the cerebral cortex and the leg muscles. Yet, little is known about how cortico-muscular coupling (CMC) supports the execution of reactive stepping. We conducted an exploratory analysis investigating time-dependent CMC with specific leg muscles in a reactive stepping task.

View Article and Find Full Text PDF

Reactive balance recovery often requires stepping responses to regain postural stability following a sudden change in posture. The monitoring of postural stability has been linked to neuroelectrical markers such as the N1 potential and midfrontal theta frequency dynamics. Here, we investigated the role of cortical midfrontal theta dynamics during balance monitoring following foot landing of a reactive stepping response to recover from whole-body balance perturbations.

View Article and Find Full Text PDF

Stepping is a common strategy to recover postural stability and maintain upright balance. Postural perturbations have been linked to neuroelectrical markers such as the N1 potential and theta frequency dynamics. Here, we investigated the role of cortical midfrontal theta dynamics of balance monitoring, driven by balance perturbations at different initial standing postures.

View Article and Find Full Text PDF