Light detection and ranging systems based on optical phased arrays and integrated silicon photonics have sparked a surge of applications over the recent years. This includes applications in sensing, free-space communications, or autonomous vehicles, to name a few. Herein, we report a design of two-dimensional optical phased arrays, which are arranged in a grid of concentric rings.
View Article and Find Full Text PDFOn-chip optical phased arrays (OPAs) are the enabling technology for diverse applications, ranging from optical interconnects to metrology and light detection and ranging (LIDAR). To meet the required performance demands, OPAs need to achieve a narrow beam width and wide-angle steering, along with efficient sidelobe suppression. A typical OPA configuration consists of either one-dimensional (1D) linear or two-dimensional (2D) rectangular arrays.
View Article and Find Full Text PDFA meshless method for the solution of full vectorial optical mode fields has been applied to micro-structured optical waveguides. The Finite Cloud Method is used to approximate the solution using a point distribution and material definitions. Presented are two methods of defining material interfaces, one which implements a step index and a second which uses a graded index.
View Article and Find Full Text PDFA new interferometer-based optical sensing platform with nanostructured thin films of ZrO2 or TiO2 as sensing environment has been developed. With the application of an IC compatible Si(3)N(4) waveguide technology, Mach-Zehnder interferometer devices have been fabricated. The application of the glancing angle deposition technique allowed fabrication of nanostructured thin films as the optical sensing environment.
View Article and Find Full Text PDF