In animal models, exposure to excess testosterone during gestation induces polycystic ovary syndrome (PCOS)-like reproductive and metabolic traits in female offspring, suggesting that the hyperandrogenemic intrauterine environment may have a role in the etiology of PCOS. Additionally, few studies have also addressed metabolic and reproductive outcomes in male offspring. In the present study, the intravenous glucose tolerance test (IGTT) was used to assess the insulin-glucose homeostasis at various ages during sexual development in male sheep born to testosterone-treated ewes.
View Article and Find Full Text PDFClinical and experimental evidences indicate that epigenetic modifications induced by the prenatal environment are related to metabolic and reproductive derangements in polycystic ovary syndrome (PCOS). Alterations in the leptin and adiponectin systems, androgen signalling and antimüllerian hormone (AMH) levels have been observed in PCOS women and in their offspring. Using a targeted Next-Generation Sequencing (NGS), we studied DNA methylation in promoter regions of the leptin (), leptin receptor (), adiponectin (), adiponectin receptor 1 and 2 ( and ), and androgen receptor () genes in 24 sons and daughters of women with PCOS (12 treated with metformin during pregnancy) and 24 children born to non-PCOS women during early infancy (2-3 months of age).
View Article and Find Full Text PDFHyperandrogenemia and metabolic disturbances during postnatal life are strongly linked both to polycystic ovary syndrome and other conditions that arise from prenatal exposure to androgen excess. In an animal model of this condition, we reported that insulin sensitivity (IS) was lower in young female sheep born to testosterone-treated mothers versus sheep born to non-exposed mothers (control). This lower insulin sensitivity remains throughout reproductive life.
View Article and Find Full Text PDFBackground: Women diagnosed with polycystic ovary syndrome (PCOS) suffer from an unfavorable cardiometabolic risk profile, which is already established by child-bearing age.
Objective And Rationale: The aim of this systematic review along with an individual participant data meta-analysis is to evaluate whether cardiometabolic features in the offspring (females and males aged 1-18 years) of women with PCOS (OPCOS) are less favorable compared to the offspring of healthy controls.
Search Methods: PubMed, Embase and gray literature databases were searched by three authors independently (M.
How obesity and elevated androgen levels in women with polycystic ovary syndrome (PCOS) affect their offspring is unclear. In a Swedish nationwide register-based cohort and a clinical case-control study from Chile, we found that daughters of mothers with PCOS were more likely to be diagnosed with PCOS. Furthermore, female mice (F) with PCOS-like traits induced by late-gestation injection of dihydrotestosterone, with and without obesity, produced female F-F offspring with PCOS-like reproductive and metabolic phenotypes.
View Article and Find Full Text PDF