Can J Microbiol
January 2008
The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S.
View Article and Find Full Text PDFJ Gen Appl Microbiol
October 2003
Selenate-resistant mutants were obtained from several strains of Schizosaccharomyces pombe. The obtained mutants all belonged to the same genetic complementation group. They were low in sulphate uptake activity and in ATP sulphurylase activity.
View Article and Find Full Text PDFThe 90 kDa heat shock protein, Hsp90, is an abundant molecular chaperone participating in the cytoprotection of eukaryotic cells. Here we analyzed the involvement of Hsp90 in the maintenance of cellular integrity using partial cell lysis as a measure. Inhibition of Hsp90 by geldanamycin, radicicol, cisplatin, and novobiocin induced a significant acceleration of detergent- and hypotonic shock-induced cell lysis.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
January 2003
Sulphur plays an important role in yeasts, especially in the biosynthesis of methionine and cysteine. The inorganic sulphur source, sulphate, is taken up by the cells via the sulphate-permease(s). After its transport, it is activated and subsequently reduced to sulphide or serves as a donor for sulphurylation reactions.
View Article and Find Full Text PDFMultidrug resistance in Saccharomyces cerevisiae mainly results from the overexpression of genes coding for the membrane efflux pumps, the major facilitators and the ABC binding cassette transporters, under the control of key transcription regulators encoded by the PDR1 and PDR3 genes. Pdr3p transcriptional activator contains a weak activation domain near the N-terminal zinc finger, a central regulatory domain, and a strong activation domain near the carboxyl terminus. Here we report the results of the mutational analysis of the C-terminal region of Pdr3p.
View Article and Find Full Text PDF