Invest Ophthalmol Vis Sci
October 2004
Purpose: Ischemic proliferative retinopathy, which occurs as a complication of diabetes mellitus, prematurity, or retinal vein occlusion, is a major cause of blindness worldwide. In addition to retinal neovascularization, it involves retinal degeneration, of which apoptosis is the main cause. A prior report has described the cloning of a novel HIF-1-responsive gene, RTP801, which displays strong hypoxia-dependent upregulation in ischemic cells of neuronal origin, both in vitro and in vivo.
View Article and Find Full Text PDFFollowing intravenous administration of cationic lipid-DNA complexes (lipoplexes) into mice, transfection (lipofection) occurs predominantly in the lungs. This was attributed to high entrapment of lipoplexes in the extended lung vascular tree. To determine whether lipofection in other organs could be enhanced by increasing the degree of vascularization, we used a transgenic mouse model with tissue-specific angiogenesis in liver.
View Article and Find Full Text PDFcDNA microarray hybridization was used in an attempt to identify novel genes participating in cellular responses to prolonged hypoxia. One of the identified novel genes, designated Hi95 shared significant homology to a p53-regulated GADD family member PA26. In addition to its induction in response to prolonged hypoxia, the increased Hi95 transcription was observed following DNA damage or oxidative stress, but not following hyperthermia or serum starvation.
View Article and Find Full Text PDFHypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801.
View Article and Find Full Text PDFDisease severity varies among cystic fibrosis (CF) patients carrying the same CFTR genotype. Here we studied the mechanism underlying disease variability in individuals carrying a splicing CFTR mutation, 3849+10 kb C-->T. This mutation was shown to produce both correctly and aberrantly spliced CFTR transcripts containing an additional cryptic exon.
View Article and Find Full Text PDF