Publications by authors named "T Shiraki-Iida"

Recombinant Sendai virus (SeV)-mediated gene transfer to differentiated airway epithelial cells has shown to be very efficient, because of its ability to overcome the intra- and extracellular barriers known to limit gene delivery. However, this virus is transmission competent and therefore unlikely to be suitable for use in clinical trials. A nontransmissible, replication-competent recombinant SeV has recently been developed by deleting the envelope Fusion (F) protein gene (SeV/DeltaF).

View Article and Find Full Text PDF

An improved system is described to recover non-transmissible Sendai virus that lack the envelope fusion (F) gene from cloned cDNA. The system (1) used plasmids that expressed the F and the HN viral envelope proteins, as well as the plasmids that expressed the viral NP, P, and L proteins as helper plasmids for recovery, and (2) overlaid packaging cells that expressed the F protein. With this improved system, we have succeeded in recovery of F-defective Sendai virus expressing two foreign proteins, and expression vectors that do not contain the EGFP reporter gene.

View Article and Find Full Text PDF

The klotho gene, originally identified by insertional mutagenesis in mice, suppresses multiple aging phenotypes (e.g., arteriosclerosis, pulmonary emphysema, osteoporosis, infertility, and short life span).

View Article and Find Full Text PDF

Background: We have established a novel mouse mutant, klotho (kl), by insertional mutation of a transgene and identified the structural gene. The mouse homozygous for the mutation exhibits multiple pathological conditions resembling age-related disorders in humans and can be regarded as a model of human premature aging syndromes. However, the pathophysiological role of Klotho protein has not been clarified.

View Article and Find Full Text PDF

We previously established a novel mouse model for human aging and identified the genetic foundation responsible for it. A defect in expression of a novel gene, termed klotho (kl), leads to a syndrome resembling human aging in mice. The kl gene encodes a single-pass membrane protein whose extracellular domain carries homology to beta-glucosidases.

View Article and Find Full Text PDF