Biol Trace Elem Res
December 2010
Growth of Cyanidioschyzon merolae was inhibited depending on the cadmium(II) concentration in the culture medium. Although a lower level (0.01 mM) of Cd(II) inhibited growth by a factor of 0.
View Article and Find Full Text PDFPhytochelatins (PCs) are nonprotein peptides with the general structure (gamma-Glu-Cys)(n)-Gly (PC(n)), where n is greater than or equal to 2. They are synthesized through a reaction catalyzed by phytochelatin synthase (PCS) in the presence of metal cations and using the tripeptide glutathione (gamma-Glu-Cys-Gly) and/or previously synthesized PC(n) as the substrate. Here, a highly sensitive assay for PCS activity was devised, in which the dequenching of Cu(I)-bathocuproinedisulfonate complexes was used in the detection system of a reversed-phase high-performance liquid chromatograph.
View Article and Find Full Text PDFPhytochelatins (PCs), non-protein peptides with the general structure [(γ-Glu-Cys)n-Gly (n≥ 2)], are involved in the detoxification of toxic heavy metals mainly in higher plants. The synthesis of the peptides is mediated by phytochelatin synthase (PCS), which is activated by a range of heavy metals. CmPCS, a PCS-like gene found in the genomic DNA of the primitive red alga Cyanidioschyzon merolae, was isolated and a recombinant protein (rCmPCS) fused with a hexahistidine tag at the N-terminus of CmPCS was produced.
View Article and Find Full Text PDFA novel method has been devised for the determination of phytochelatins (PCs), heavy-metal-tolerant peptides produced by higher plants and algae. The method is based on the facts that fluorescence of bathocuproine disulfonate (BCS) is quenched by Cu(I) ions as a result of Cu(I)-BCS complex formation and that PCs compete with BCS for Cu(I). Detection of PCs via recovered fluorescence of BCS using the Cu(I)-BCS complex as a postcolumn reagent, following separation of peptides on an octyldecylsilane column, demonstrated a highly sensitive method for determination of PCs.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2008
Phytochelatin synthase (PCS) catalyzes the synthesis of phytochelatins (PCs), which play a detoxification role in higher plants. Heterologous expression of CmPCS, a product of a PCS-like gene from the genomic DNA of the red alga Cyanidioschyzon merolae, rescued Cd(2+)-sensitive yeast from Cd(2+) toxicity. The fact that these transformed cells synthesized PCs demonstrates that CmPCS is functional.
View Article and Find Full Text PDF