Publications by authors named "T Shidore"

Necrotic enteritis (NE), caused by the gram-positive, anaerobic bacterium, Clostridium perfringens, results in an estimated $6 billion in annual economic losses to the global poultry industry. C. perfringens is part of the normal microflora of the poultry gastrointestinal tract, but damage to the intestinal epithelium can lead to increased cell proliferation and production of toxins which gives rise to disease.

View Article and Find Full Text PDF

Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.

View Article and Find Full Text PDF

Toxin⁻antitoxin (TA) systems are diverse genetic modules with demonstrated roles in plasmid stability, stress management, biofilm formation and antibiotic persistence. However, relatively little is known about their functional significance in plant pathogens. In this study we characterize type II and IV TA systems in the economically important plant pathogen .

View Article and Find Full Text PDF

Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are gene modules that are ubiquitous in free-living prokaryotes. Diverse in structure, cellular function, and fitness roles, TA systems are defined by the presence of a toxin gene that suppresses bacterial growth and a toxin-neutralizing antitoxin gene, usually encoded in a single operon. Originally viewed as DNA maintenance modules, TA systems are now thought to function in many roles, including bacterial stress tolerance, virulence, phage defense, and biofilm formation.

View Article and Find Full Text PDF