Publications by authors named "T Seene"

Background: Several pathological conditions (atrophy, dystrophy, spasticity, inflammation) can change muscle biomechanical parameters. Our previous works have shown that dexamethasone treatment changes skeletal muscle tone, stiffness, elasticity. Exercise training may oppose the side effects observed during dexamethasone treatment.

View Article and Find Full Text PDF

Background: Aging leads to changes in skeletal muscle quantity and quality and is accompanied with increase in body mass and fat mass, whereas fat-free mass either decreases or remains unchanged. The body composition of rodents has been an important factor for clinical trials in the laboratory. Glucocorticoids such as dexamethasone are widely used in clinical medicine, but may induce myopathy, characterized by muscle weakness, atrophy, and fatigue.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to estimate the state of tension (tone) and the biomechanical and viscoelastic properties of skeletal muscle in aging rats during the administration of different doses of dexamethasone and to find the relationships among the state of muscle atrophy, muscle strength, and the abovementioned muscle properties.

Methods: Muscle state of tension, biomechanical (elasticity, dynamic stiffness) and viscoelastic (mechanical stress relaxation time, Deborah number) properties (using MyotonPRO, Myoton Ltd, Tallinn, Estonia), lean body mass (BM), and hind limb grip strength were measured before and after the administration of a 10-day treatment with dexamethasone 100 μg/100 g BM (young and old group) and 50 μg/100 g BM (old group).

Results: Muscle elasticity (logarithmic decrement) was lower in old animals (1.

View Article and Find Full Text PDF

The aim of our research was to examine whether there are differences in the morphology of neuromuscular junctions of different types of muscle fibers in rodents, and after their adaptation to six weeks endurance exercise training. After 5-day acclimation, Wistar rats were subjected to run with the speed 35 m/min during 6 week, 5 days per week and the training volume reached 60 min per day. Muscle samples for ultrastructural studies were fixed, dehydrated and embedded in Epon-812.

View Article and Find Full Text PDF

Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers.

View Article and Find Full Text PDF