Publications by authors named "T Scott Troppy"

Occupational exposure to SARS-CoV-2 varies by profession, but "essential workers" are often considered in aggregate in COVID-19 models. This aggregation complicates efforts to understand risks to specific types of workers or industries and target interventions, specifically towards non-healthcare workers. We used census tract-resolution American Community Survey data to develop novel essential worker categories among the occupations designated as COVID-19 Essential Services in Massachusetts.

View Article and Find Full Text PDF

Purpose: When studying health risks across a large geographic region such as a state or province, researchers often assume that finer-resolution data on health outcomes and risk factors will improve inferences by avoiding ecological bias and other issues associated with geographic aggregation. However, coarser-resolution data (e.g.

View Article and Find Full Text PDF

Infectious disease surveillance frequently lacks complete information on race and ethnicity, making it difficult to identify health inequities. Greater awareness of this issue has occurred due to the COVID-19 pandemic, during which inequities in cases, hospitalizations, and deaths were reported but with evidence of substantial missing demographic details. Although the problem of missing race and ethnicity data in COVID-19 cases has been well documented, neither its spatiotemporal variation nor its particular drivers have been characterized.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has highlighted the need for targeted local interventions given substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to the city or county level to protect patient privacy, but more granular data are necessary to identify and act upon community-level risk factors that can change over time.

Methods: Individual COVID-19 case and mortality data from Massachusetts were geocoded to residential addresses and aggregated into two time periods: "Phase 1" (March-June 2020) and "Phase 2" (September 2020 to February 2021).

View Article and Find Full Text PDF

Antibiotic resistant bacterial infections are a growing global health crisis. Antibiograms, aggregate antimicrobial resistance reports, are critical for tracking antibiotic susceptibility and prescribing antibiotics. This research leverages fifteen years of the expansive Massachusetts statewide antibiogram dataset curated by the Massachusetts Department of Public Health.

View Article and Find Full Text PDF