The integration of biomolecules into supramolecular nanostructures forms the basis of the natural world. Naturally occurring liquid-liquid phase separation resulting in biomolecular condensates has inspired the formation of biomolecule-based smart materials with multi-dimensional applications. A non-covalent bio-condensation between biomass DNA and guanosine monophosphate (GMP) has been described, mimicking chromatin folding and creating a unique "all-nucleic" DNA-GMP condensates.
View Article and Find Full Text PDFHaloperoxidases represent an important class of enzymes that nature adopts as a defense mechanism to combat the colonial buildup of microorganisms on surfaces, commonly known as biofouling. Subsequently, there has been tremendous focus on the development of artificial haloperoxidase mimics that can catalyze the oxidation of X (halide ion) in the presence of HO to form HOX. The natural intermediate HOX disrupts the bacterial quorum sensing, thus preventing biofilm formation.
View Article and Find Full Text PDFSelf-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12.
View Article and Find Full Text PDF