Cell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes.
View Article and Find Full Text PDFDrugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion.
View Article and Find Full Text PDFThis study characterizes changes occurring in the central histaminergic system associated with ischemia-reperfusion pathology in the rat. Specifically, after a postocclusion time period of 48 h, we have analyzed histamine H(1) receptor mRNA expression, histamine H(2) receptor protein amount and binding densities, and histamine H(3) receptor mRNA expression and binding densities in brain regions that have been suggested to be selectively vulnerable to transient global ischemia, i.e.
View Article and Find Full Text PDFIncreased brain histamine is reported to protect against convulsions. We used systemic kainic acid (KA) administration to study possible changes of the histaminergic system in rat brain in status epilepticus (SE). Robust increases in brain histamine concentrations and numbers of histamine-immunoreactive nerve fibers were detected in the piriform cortex (Pir) and amygdala after KA injection, suggesting a reactive increase, which is opposite to other published aminergic transmitter responses.
View Article and Find Full Text PDFTo survive winter the Siberian hamster has evolved profound physiological and behavioral adaptations, including a moult to winter pelage, regression of the reproductive axis, onset of daily torpor and increased capacity for thermogenesis. However, one of the most striking adaptations is the catabolism of intraabdominal and sc fat reserves contributing to the loss of up to 40% of body weight. These physiological and behavioral adaptations are photoperiodically driven, yet neither the site(s) in the brain nor the molecular mechanism(s) involved in the regulation of these profound adaptations is known.
View Article and Find Full Text PDF