Publications by authors named "T Salditt"

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Synaptic vesicle clusters or pools are functionally important constituents of chemical synapses. In the so-called reserve and the active pools, neurotransmitter-loaded synaptic vesicles (SVs) are stored and conditioned for fusion with the synaptic membrane and subsequent neurotransmitter release during synaptic activity. Vesicle clusters can be considered as so-called membraneless compartments, which form by liquid-liquid phase separation.

View Article and Find Full Text PDF
Article Synopsis
  • The synaptic vesicle cluster (SVC) is critical for releasing neurotransmitters at chemical synapses and also helps regulate various cofactors involved in exo- and endocytosis.
  • It contains various molecules important for synaptic processes, including cytoskeletal elements and adhesion proteins, and influences the positioning and activity of key organelles like mitochondria.
  • Changes in the size of the SVC may align with alterations in the postsynaptic area, indicating that it plays a central role in synchronizing pre- and postsynaptic functions, which warrants further research into its regulatory mechanisms.
View Article and Find Full Text PDF

Background And Aim: Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way.

View Article and Find Full Text PDF

Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space.

View Article and Find Full Text PDF