Publications by authors named "T Sakumoto"

Highly biocompatible microcarriers are culture materials designed to enhance the efficiency of cell spheroid culture. Typically, collagen or specially processed plastic materials serve as these microcarriers. In the context of cultured-cell-based food production, however, both collagen and plastic materials present challenges regarding their cost-effectiveness and edibility.

View Article and Find Full Text PDF

Lymphedema, resulting from impaired lymphatic drainage, causes inflammation, fibrosis and tissue damage leading to symptoms such as limb swelling and restricted mobility. Despite various treatments under exploration, no standard effective therapy exists. Here a novel technique using the pyro-drive jet injection (PJI) was used to create artificial clefts between collagen fibers, which facilitated the removal of excess interstitial fluid.

View Article and Find Full Text PDF

The importance of the microenvironment is widely recognized as it regulates not only malignant cell behavior but also drug sensitivity. The cancer cell microenvironment is composed of biological, physical and chemical elements, and simultaneous reproduction of these three elements are important conditions investigated in cancer research. In the present study, we focused on the epidemiological and anatomical specificities of endometrioid carcinoma, obesity (biological), fluid flow (physical) and anticancer agents (chemical) to target the specific microenvironmental elements of endometrioid carcinoma.

View Article and Find Full Text PDF

Squamous cell carcinoma (SCC) is the most major malignant tumor of the tongue. The tongue exists at the air-liquid interface and is covered with saliva. In addition, the tongue constituent cells and tongue cancer are present under fluid flow stimulation due to the abundant capillary network and contraction of muscle tissue.

View Article and Find Full Text PDF

The mechanisms controlling the aggressiveness and survival of cervical SCC cells remain unclear. We investigated how the physical and biological microenvironments regulate the growth, apoptosis and invasiveness of cervical cancer cells. Dynamic flow and air exposure were evaluated as physical microenvironmental factors, and stromal fibroblasts were evaluated as a biological microenvironmental factor.

View Article and Find Full Text PDF